On signed edge domination numbers of graphs
نویسندگان
چکیده
منابع مشابه
Signed edge majority domination numbers in graphs
The open neighborhood NG(e) of an edge e in a graph G is the set consisting of all edges having a common end-vertex with e and its closed neighborhood is NG[e] = NG(e) ∪ {e}. Let f be a function on E(G), the edge set of G, into the set {−1, 1}. If ∑x∈NG[e] f(x) ≥ 1 for at least a half of the edges e ∈ E(G), then f is called a signed edge majority dominating function of G. The minimum of the val...
متن کاملOn Signed Edge Total Domination Numbers of Graphs
For the terminology and notations not defined here, we adopt those in Bondy and Murty [1] and Xu [2] and consider simple graphs only. Let G = (V,E) be a graph with vertex set V = V (G) and edge set E = E(G). For any vertex v ∈ V , NG(v) denotes the open neighborhood of v in G and NG[v] = NG(v) ∪ {v} the closed one. dG(v) = |NG(v)| is called the degree of v in G, ∆ and δ denote the maximum degre...
متن کاملOn the signed Roman edge k-domination in graphs
Let $kgeq 1$ be an integer, and $G=(V,E)$ be a finite and simplegraph. The closed neighborhood $N_G[e]$ of an edge $e$ in a graph$G$ is the set consisting of $e$ and all edges having a commonend-vertex with $e$. A signed Roman edge $k$-dominating function(SREkDF) on a graph $G$ is a function $f:E rightarrow{-1,1,2}$ satisfying the conditions that (i) for every edge $e$of $G$, $sum _{xin N[e]} f...
متن کاملOn Signed Edge Domination Numbers of Trees
The signed edge domination number of a graph is an edge variant of the signed domination number. The closed neighbourhood NG[e] of an edge e in a graph G is the set consisting of e and of all edges having a common end vertex with e. Let f be a mapping of the edge set E(G) of G into the set {−1, 1}. If ∑ x∈N [e] f(x) 1 for each e ∈ E(G), then f is called a signed edge dominating function on G. T...
متن کاملThe Signed k-Domination Numbers In Graphs
For any integer k ≥ 1, a signed (total) k-dominating function is a function f : V (G) → {−1, 1} satisfying w∈N [v] f(w) ≥ k ( P w∈N(v) f(w) ≥ k) for every v ∈ V (G), where N(v) = {u ∈ V (G)|uv ∈ E(G)} and N [v] = N(v)∪{v}. The minimum of the values ofv∈V (G) f(v), taken over all signed (total) k-dominating functions f, is called the signed (total) k-domination number and is denoted by γkS(G) (γ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2001
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(01)00044-9